

Communication

Redox-Switched Oxidation of Dihydrogen Using a Non-Innocent Ligand

Mark R. Ringenberg, Swarna Latha Kokatam, Zachariah M. Heiden, and Thomas B. Rauchfuss

J. Am. Chem. Soc., 2008, 130 (3), 788-789 • DOI: 10.1021/ja076801k

Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 5 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 12/29/2007

Redox-Switched Oxidation of Dihydrogen Using a Non-Innocent Ligand

Mark R. Ringenberg, Swarna Latha Kokatam, Zachariah M. Heiden, and Thomas B. Rauchfuss*

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Received September 8, 2007; E-mail: rauchfuz@uiuc.edu

Non-innocent ligands have long attracted attention because of their unusual redox properties and their apparent, often deceptive, ability to stabilize metals in unusual oxidation states.¹ Copper quinoid complexes have been demonstrated as excellent oxidation catalysts² and nickel dithiolenes binding alkenes in a redox-switchable manner.³ C–C coupling with complexes of diimine and aminophenolate ligands has been reported more recently.⁴ In this report, we describe experiments demonstrating a role for non-innocent ligands in the activation of dihydrogen.

The present work focuses on complexes of the type $(\eta^5-C_5R_5)$ -MX₂ where R = H, Me. Prototypical complexes of this type are Cp*M(E₂C₆H₄) (Cp* = C₅Me₅⁻, E = O, S, and M = Rh, Ir).^{5,6} Such species display low Lewis acidity despite their 16e configuration, consistent with the π -donor properties of dioxalene and dithiolene ligands. We posed the following question: could their reactivity toward dihydrogen be "switched on" by oxidation of the complex, especially when the oxidation is ligand-localized?

In considering the oxidation of Cp*M($E_2C_6H_4$), two problems become apparent: (i) dithiolenes and dioxalenes are relatively ineffective at stabilizing cationic derivatives as reflected in their high redox potentials;⁶ and (ii) due to the lack of steric protection, oxidation would be expected to induce aggregation, thereby precluding Lewis acidity.⁷ Guided by these considerations, we examined complexes of the electronically related ligand 'BA^FPh²⁻ (where H₂'BA^FPh is 2-(2-trifluoromethyl)anilino-4,6-di-*tert*-butylphenol) that has been popularized by Wieghardt et al.^{8,9} Complexes derived from H₂'BA^FPh enjoy excellent solubility, withstand one- and two-electron oxidations, and the resulting oxidized products resist dimerization.

The Cp*Ir('BA^FPh) (1) was synthesized from [Cp*IrCl₂]₂ and H₂'BA^FPh in the presence of 2 equiv of base. This intensely colored species exhibits conventional ¹H and ¹⁹F NMR spectra, and its optical properties are unaffected by changes in concentration and solvents. X-ray crystallographic analysis confirms that **1** is monomeric and contains the dianionic ligand ('BA^FPh²⁻) as indicated by the ring C–C distances that are nearly equidistant at 1.40 \pm 0.01 Å. The long C(11)–O(1) and C(16)–N(1) bond distances in **1** at 1.34(1) and 1.33(1) Å also support the description of 'BA^FPh²⁻ (Supporting Information).⁹ Complex **1** displays no affinity for donor ligands such as CO, MeCN, much less H₂.

Cyclic voltammetric measurements indicate that **1** undergoes sequential one-electron oxidations in CH₂Cl₂ solution at readily accessible potentials (Figure 1). A Cottrell plot (i_p vs (scan rate)^{1/2}) indicates that both steps are diffusion-controlled. On a preparative scale, oxidation of **1** by a CH₂Cl₂ suspension of AgPF₆ gave the corresponding salt [**1**]PF₆ isolated in analytical purity. [**1**]PF₆ was found to be EPR-active and paramagnetic with an effective magnetic moment of 1.75 $\mu_{\rm B}$.

Our key finding is that a CH_2Cl_2 solution of [1]PF₆ is reduced by H_2 (eq 1).

$$2 \left[Cp^* Ir({}^{t}BA^{F}Ph) \right]^{+} + H_2 \rightarrow 2 Cp^* Ir({}^{t}BA^{F}Ph) + 2 H^{+}$$
(1)

Figure 1. Cyclic voltammogram of $\sim 10^{-3}$ M CH₂Cl₂ solutions of **1** (100 mV/s, 0.1 M Bu₄NPF₆; $E_{1/2} = 0.050$, 0.355 V vs Fc/Fc⁺).

Figure 2. UV-vis spectrum of 1.0×10^{-4} M [1]PF₆ in a CH₂Cl₂ solution with 1.5 equiv of TBP and 0.33 atm H₂ (17.35 equiv). Each trace required 2.5 s with 75 s delay between traces. Formation of 1 is indicated by the growth of the peak at 460 nm.

In the presence of the non-coordinating base 2,6-(*t*-Bu)₂C₃H₃N (TBP), the reaction progress was monitored by changes in optical spectra (Figure 2). In a control experiment to establish a possible role of **1** as the base, a 2:1 mixture of [1]PF₆ and **1** (CD₂Cl₂ solution) was found to be unreactive toward H₂, except for the formation of small amounts of Cp*₂Ir₂H₃⁺. The closeness of the **1**^{0/+} and **1**^{+/2+} couples indicates $K_{\text{disp}} \sim 0.085$ and thus raises the possibility that small amounts of **1**²⁺ are responsible for the observed oxidation of H₂. Chronoamperometry experiments showed, however, that the rate of H₂ oxidation increased by <5% when the electrolysis was conducted at 662 versus 514 mV (vs Ag/Ag⁺). The reaction was unaffected by the addition of Hg.

The rate of reduction of $[1]PF_6$ was first-order in both $[1]PF_6$ and $[H_2]$ with an overall second-order rate constant of 0.57 (±0.14) M^{-1} s⁻¹. In a MeCN solution, however, the reduction of $[1]PF_6$ by H_2 is slower, indicating that MeCN competes with binding of H_2 .

Figure 3. Molecular structure of the cation in [1]BAr^F₄ with thermal ellipsoids shown at 50% probability. Key distances (Å, corresponding distances for 1 in brackets): Ir-N1, 2.010(6) [1.963(4)]; Ir-O1 2.045(5) [1.996(3)]; C11-O1, 1.287(8) [1.34(1)]; C12-N1, 1.343(9) [1.33(1)]; C11-C16, 1.428(10) [1.407(5)]; C11-C12, 1.452(9) [1.416(5)]; C12-C13, 1.398-(10) [1.396(6)]; C13-C14, 1.363(10) [1.396(6)]; C14-C15, 1.454(11) [1.388(5)]; C15-C16, 1.371(10) [1.395(6)];

Scheme 1. Proposed H₂ Oxidation Cycle

The rate law is consistent with the intermediacy of $[1(H_2)]^+$ (Scheme 1) although it is difficult to completely exclude the involvement of the dication. The acidity of H₂ is known to dramatically increase (up to 40 orders of magnitude) upon coordination to an electrophilic metal center.¹⁰ Loss of a proton would produce an electron-rich 17e hydride, which would be susceptible to further oxidative deprotonation.11 Consistent with an acidic intermediate, the rate of reduction of $[1]^+$ by H_2 was found to be independent of the concentration of the base. The rate displayed little isotope effect $(k_{\rm H2}/k_{\rm D2} < 1.2)$. Modest isotope effects are typical for the rate binding of H₂ versus D₂ to metal centers.^{10,12} In the absence of base, [1]PF₆ was found to undergo hydrogenolysis to give [Cp*₂- Ir_2H_3 ⁺ and free H₂'BA^FPh, consistent with the intermediacy of an acidic dihydrogen complex. Triethylsilane, considered an electronrich analogue of H₂,¹⁰ reduced a CD₂Cl₂ solution of one equiv of [1]PF₆ to 1 within the time of mixing. Otherwise triethylsilane and 1 do not react under these conditions.

The ability of **1** to *catalyze* the oxidation of H_2 was demonstrated using a THF- d_8 solution of 6 equiv each of AgBF₄ and TBP under H_2 , which was found to be stable until the addition of 1 equiv of $1.^{13}$ The reaction gave **1** (80% yield) as well as some [Cp*₂Ir₂H₃]⁺ and precipitated copious amounts of silver metal. In a separate experiment, a solution of **1**, 6 equiv each of AgBF₄ and TBP, was found to uptake 3 equiv of H_2 over the course of 1.5 h.

The oxidation of H₂ is attributed to the increased Lewis acidity of [1]⁺ induced *by ligand-centered oxidation*. Complex [1]⁺ forms stable adducts with acetonitrile, whereas the neutral complexes do not. Crystallographic analysis of the naked cation in [1]BAr^F₄ (BAr^F₄ = B(C₆H₃-3,5-(CF₃)₂)₄) revealed a quasi-pentacoordinate complex. The C–O bond is significantly shortened (Figure 3); the Ir–N and Ir–O distances are elongated consistent with the N, O ligand being a poorer donor. The Ir–Cp*(centroid) distance contracts slightly upon oxidation of **1** (1.788(2) vs 1.766(2) Å). The C–C distances within the aminophenolate display increased bond alternation, diagnostic of semiquinonate character,^{8,9} which is manifested in enhanced Lewis acidity for the metal center.

In summary, ligand-based oxidation has been demonstrated to enhance the Lewis acidity of a metal complex sufficiently to induce a reaction with H_2 .¹⁴ The kinetics, stoichiometry, and crystallography provide a consistent pattern that encourages further investigations of non-innocent ligands in other aspects of organometallic chemistry. We note that redox is an inextricable aspect of the hydrogenases.¹⁵

Acknowledgment. This research was supported by the Department of Energy. We thank Scott Wilson for help with the crystallographic analysis, and Frédéric Gloaguen (CNRS-Brest) for advice on the electrochemistry.

Supporting Information Available: Synthetic methods, electrochemical results, kinetics, and crystallographic analysis of 1 and $[1]BArF_4$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Kaim, W.; Schwederski, B. Pure Appl. Chem. 2004, 76, 263-451.
 (b) Ward, M. D.; McCleverty, J. A. J. Chem. Soc., Dalton Trans. 2002, 275-288.
 (c) Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Ed. 1998, 37, 895-908.
 (d) Butin, K. P.; Beloglazkina, E. K.; Zyk, N. V. Russ. Chem. Rev. 2005, 74, 531-553.
 (e) de Bruin, B.; Hetterscheid, D. G. H.; Koekkoek, A. J. J.; Grützmacher, H. Prog. Inorg. Chem. 2007, 55, 247-354.
- (2) Chaudhuri, P.; Wieghardt, K.; Weyhermüller, T.; Paine, T. K.; Mukherjee, S.; Mukherjee, C. *Biol. Chem.* 2005, *386*, 1023–1033 and references therein.
- (3) (a) Wang, K.; Stiefel, E. I. Science 2001, 291, 106–109. (b) Geiger, W.
 E. Inorg. Chem. 2002, 41, 136–139. (c) Harrison, D. J.; Nguyen, N.;
 Lough, A. J.; Fekl, U. J. Am. Chem. Soc. 2006, 128, 11026–11027.
- (4) Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13340–13341. Haneline, M. R.; Heyduk, A. F. J. Am. Chem. Soc. 2006, 128, 8410–8411.
- (5) Fourmigué, M. Coord. Chem. Rev. 1998, 178-180, 823-864.
- (6) (a) Don, M. J.; Yang, K. Y.; Bott, S. G.; Richmond, M. G. J. Organomet. Chem. 1997, 544, 15–21. (b) Yang, K.; Don, M. J.; Sharma, D. K.; Bott, S. G.; Richmond, M. G. J. Organomet. Chem. 1995, 495, 61–69.
- (7) (a) Severin, K. Chem. Commun. 2006, 3859–3867. (b) Espinet, P.; Bailey, P. M.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1979, 1542–1547.
- (8) Kokatam, S.; Weyhermüller, T.; Bothe, E.; Chaudhuri, P.; Wieghardt, K. Inorg. Chem. 2005, 44, 3709–3717 and references therein.
- (9) Kokatam, S.-L.; Chaudhuri, P.; Weyhermüller, T.; Wieghardt, K. Dalton Trans. 2007, 373–378.
- (10) Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes; Kluwer Academic/ Plenum: New York, 2001.
- (11) (a) Ryan, O. B.; Tilset, M.; Parker, V. D. J. Am. Chem. Soc. 1990, 112, 2618–2626. (b) Heiden, Z. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 2006, 128, 13048–13049.
- (12) Zhang, K.; Gonzalez, A. A.; Hoff, C. D. J. Am. Chem. Soc. 1989, 111, 3627–3632 and references therein.
- (13) Chalk, A. J.; Halpern, J.; Harkness, A. C. J. Am. Chem. Soc. 1959, 81, 5854–5857.
- (14) Leading references of metal-catalyzed redox of H₂: (a) Kölle, U.; Grätzel, M. Angew. Chem. **1987**, 99, 572–574. (b) Fraze, K.; Wilson, A. D.; Appel, A. M.; Rakowski DuBois, M.; DuBois, D. L. Organometallics **2007**, 26, 3918–3924. (c) Collman, J. P.; Wagenknecht, P. S.; Hutchison, J. E.; Lewis, N. S.; Lopez, M. A.; Guilard, R.; L'Her, M.; Bothner-By, A. A.; Mishra, P. K. J. Am. Chem. Soc. **1992**, 114, 5654–5664.
- (15) (a) Hembre, R. T.; McQueen, J. S.; Day, V. W. J. Am. Chem. Soc. 1996, 118, 798–803. (b) Hembre, R. T.; McQueen, S. J. Am. Chem. Soc. 1994, 116, 2141–2142. (c) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem. Rev. 2007, 107, 4273–4303. (d) Georgakaki, I. P.; Darensbourg, M. Y. Comp. Coord. Chem. II 2004, 8, 549–568. (e) Linck, R. C.; Rauchfuss, T. B. In Bioorganometallics: Biomolecules, Labeling, Medicine; Jaouen, G., Ed.; Wiley-VCH: Weinheim, Germany, 2005. (f) Lu, Z.; White, C.; Rheingold, A. L.; Crabtree, R. H. Angew. Chem., Int. Ed. Engl. 1993, 32, 115–116.

JA076801K